Twisted Homogeneous Coordinate Rings of Abelian Surfaces via Mirror Symmetry
نویسنده
چکیده
In this paper we study Seidel’s mirror map for abelian and Kummer surfaces. We find that mirror symmetry leads in a very natural way to the classical parametrization of Kummer surfaces in P. Moreover, we describe a family of embeddings of a given abelian surface into noncommutative projective spaces.
منابع مشابه
Seidel’s Mirror Map for Abelian Varieties
We compute Seidel’s mirror map for abelian varieties by constructing the homogeneous coordinate rings from the Fukaya category of the symplectic mirrors. The computations are feasible as only linear holomorphic disks contribute to the Fukaya composition in the case of the planar Lagrangians used. The map depends on a symplectomorphism ρ representing the large complex structure monodromy. For th...
متن کامل$PI$-extending modules via nontrivial complex bundles and Abelian endomorphism rings
A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...
متن کاملSymmetry of Ext Vanishing over Non-commutative Rings
It is proved for certain graded non-commutative rings that if M and N are graded bi-modules, finitely generated from either side, then the Ext groups between M and N vanish from some step if and only if the Ext groups between N and M vanish from some step. Among the rings in question are twisted homogeneous coordinate rings of elliptic curves.
متن کاملNoncommutative Ampleness for Multiple Divisors
The twisted homogeneous coordinate ring is one of the basic constructions of the noncommutative projective geometry of Artin, Van den Bergh, and others. Chan generalized this construction to the multi-homogeneous case, using a concept of right ampleness for a finite collection of invertible sheaves and automorphisms of a projective scheme. From this he derives that certain multi-homogeneous rin...
متن کاملProposed Research
I was a graduate student at the Mas-sachusetts Institute of Technology. The rst three years of these studies were supported by an NSF Graduate Student Fellowship. My research there led to a Ph.D. thesis entitled \Noncommutative ruled surfaces." My thesis research describes certain classes of graded rings which arise as homogeneous coordinate rings of noncommutative quantizations of algebraicall...
متن کامل